3.7.23 \(\int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+b \sec (c+d x))^3} \, dx\) [623]

Optimal. Leaf size=313 \[ \frac {\left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{4 b \left (a^2-b^2\right )^2 d}+\frac {3 \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{4 a \left (a^2-b^2\right )^2 d}+\frac {\left (a^4-10 a^2 b^2-3 b^4\right ) \sqrt {\cos (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{4 a (a-b)^2 b (a+b)^3 d}-\frac {a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}+\frac {a \left (a^2-7 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))} \]

[Out]

-1/2*a^2*sin(d*x+c)*sec(d*x+c)^(1/2)/b/(a^2-b^2)/d/(a+b*sec(d*x+c))^2+1/4*a*(a^2-7*b^2)*sin(d*x+c)*sec(d*x+c)^
(1/2)/b/(a^2-b^2)^2/d/(a+b*sec(d*x+c))+1/4*(a^2+5*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellipti
cE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/b/(a^2-b^2)^2/d+3/4*(a^2+b^2)*(cos(1/2*d*x+1/
2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/(a^
2-b^2)^2/d+1/4*(a^4-10*a^2*b^2-3*b^4)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1
/2*c),2*a/(a+b),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/(a-b)^2/b/(a+b)^3/d

________________________________________________________________________________________

Rubi [A]
time = 0.45, antiderivative size = 313, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3930, 4185, 4191, 3934, 2884, 3872, 3856, 2719, 2720} \begin {gather*} -\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{2 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^2}+\frac {a \left (a^2-7 b^2\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{4 b d \left (a^2-b^2\right )^2 (a+b \sec (c+d x))}+\frac {3 \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a d \left (a^2-b^2\right )^2}+\frac {\left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 b d \left (a^2-b^2\right )^2}+\frac {\left (a^4-10 a^2 b^2-3 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a b d (a-b)^2 (a+b)^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(5/2)/(a + b*Sec[c + d*x])^3,x]

[Out]

((a^2 + 5*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(4*b*(a^2 - b^2)^2*d) + (3*(a^
2 + b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(4*a*(a^2 - b^2)^2*d) + ((a^4 - 10*a
^2*b^2 - 3*b^4)*Sqrt[Cos[c + d*x]]*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(4*a*(a - b)^
2*b*(a + b)^3*d) - (a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(2*b*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^2) + (a*(a^2
- 7*b^2)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(4*b*(a^2 - b^2)^2*d*(a + b*Sec[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3930

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a^2)
*d^3*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 3)/(b*f*(m + 1)*(a^2 - b^2))), x] + Dist
[d^3/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3)*Simp[a^2*(n - 3) + a*b
*(m + 1)*Csc[e + f*x] - (a^2*(n - 2) + b^2*(m + 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] &&
 NeQ[a^2 - b^2, 0] && LtQ[m, -1] && (IGtQ[n, 3] || (IntegersQ[n + 1/2, 2*m] && GtQ[n, 2]))

Rule 3934

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4185

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(a +
b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), I
nt[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C)*
(m + n + 1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] &
& ILtQ[n, 0])

Rule 4191

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+b \sec (c+d x))^3} \, dx &=-\frac {a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {\int \frac {-\frac {a^2}{2}-2 a b \sec (c+d x)-\frac {1}{2} \left (a^2-4 b^2\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^2} \, dx}{2 b \left (a^2-b^2\right )}\\ &=-\frac {a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}+\frac {a \left (a^2-7 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\int \frac {\frac {1}{4} a^2 \left (a^2+5 b^2\right )+a b \left (a^2+2 b^2\right ) \sec (c+d x)+\frac {1}{4} a^2 \left (a^2-7 b^2\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))} \, dx}{2 a b \left (a^2-b^2\right )^2}\\ &=-\frac {a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}+\frac {a \left (a^2-7 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\int \frac {\frac {1}{4} a^3 \left (a^2+5 b^2\right )-\left (-a^2 b \left (a^2+2 b^2\right )+\frac {1}{4} a^2 b \left (a^2+5 b^2\right )\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{2 a^3 b \left (a^2-b^2\right )^2}+\frac {\left (a^4-10 a^2 b^2-3 b^4\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{8 a b \left (a^2-b^2\right )^2}\\ &=-\frac {a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}+\frac {a \left (a^2-7 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\left (3 \left (a^2+b^2\right )\right ) \int \sqrt {\sec (c+d x)} \, dx}{8 a \left (a^2-b^2\right )^2}+\frac {\left (a^2+5 b^2\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{8 b \left (a^2-b^2\right )^2}+\frac {\left (\left (a^4-10 a^2 b^2-3 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{8 a b \left (a^2-b^2\right )^2}\\ &=\frac {\left (a^4-10 a^2 b^2-3 b^4\right ) \sqrt {\cos (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{4 a (a-b)^2 b (a+b)^3 d}-\frac {a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}+\frac {a \left (a^2-7 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\left (3 \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{8 a \left (a^2-b^2\right )^2}+\frac {\left (\left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{8 b \left (a^2-b^2\right )^2}\\ &=\frac {\left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{4 b \left (a^2-b^2\right )^2 d}+\frac {3 \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{4 a \left (a^2-b^2\right )^2 d}+\frac {\left (a^4-10 a^2 b^2-3 b^4\right ) \sqrt {\cos (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{4 a (a-b)^2 b (a+b)^3 d}-\frac {a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}+\frac {a \left (a^2-7 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 35.44, size = 428, normalized size = 1.37 \begin {gather*} \frac {-\frac {4 a b \left (-a^2 b+7 b^3+a \left (a^2+5 b^2\right ) \cos (c+d x)\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2}+\frac {4 \cos (c+d x) (b+a \cos (c+d x)) \cot (c+d x) (a+b \sec (c+d x)) \left (-a^3 b-5 a b^3+a^3 b \sec ^2(c+d x)+5 a b^3 \sec ^2(c+d x)-a b \left (a^2+5 b^2\right ) E\left (\left .\text {ArcSin}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {\sec (c+d x)} \sqrt {-\tan ^2(c+d x)}+a \left (a^3+a^2 b-7 a b^2+5 b^3\right ) F\left (\left .\text {ArcSin}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {\sec (c+d x)} \sqrt {-\tan ^2(c+d x)}-a^4 \Pi \left (-\frac {b}{a};\left .\text {ArcSin}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {\sec (c+d x)} \sqrt {-\tan ^2(c+d x)}+10 a^2 b^2 \Pi \left (-\frac {b}{a};\left .\text {ArcSin}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {\sec (c+d x)} \sqrt {-\tan ^2(c+d x)}+3 b^4 \Pi \left (-\frac {b}{a};\left .\text {ArcSin}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {\sec (c+d x)} \sqrt {-\tan ^2(c+d x)}\right )}{a (a-b)^2 (a+b)^2}}{16 b^2 d (b+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(5/2)/(a + b*Sec[c + d*x])^3,x]

[Out]

((-4*a*b*(-(a^2*b) + 7*b^3 + a*(a^2 + 5*b^2)*Cos[c + d*x])*Sin[c + d*x])/(a^2 - b^2)^2 + (4*Cos[c + d*x]*(b +
a*Cos[c + d*x])*Cot[c + d*x]*(a + b*Sec[c + d*x])*(-(a^3*b) - 5*a*b^3 + a^3*b*Sec[c + d*x]^2 + 5*a*b^3*Sec[c +
 d*x]^2 - a*b*(a^2 + 5*b^2)*EllipticE[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2]
 + a*(a^3 + a^2*b - 7*a*b^2 + 5*b^3)*EllipticF[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c
+ d*x]^2] - a^4*EllipticPi[-(b/a), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2] +
10*a^2*b^2*EllipticPi[-(b/a), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2] + 3*b^4
*EllipticPi[-(b/a), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2]))/(a*(a - b)^2*(a
 + b)^2))/(16*b^2*d*(b + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1759\) vs. \(2(365)=730\).
time = 0.40, size = 1760, normalized size = 5.62

method result size
default \(\text {Expression too large to display}\) \(1760\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/a*(1/b*a^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(
1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2*a-a+b)-1/2/(a+b)/b*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/
2*d*x+1/2*c),2^(1/2))+1/2/b*a/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2/b*a/(a^2-b^2)*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*El
lipticE(cos(1/2*d*x+1/2*c),2^(1/2))-1/2/b/(a^2-b^2)/(a^2-a*b)*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b
),2^(1/2))+3/2*b/(a^2-b^2)/(a^2-a*b)*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(
1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2)))-2*b/a*(1/2/b*a^
2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2*a-
a+b)^2+3/4*a^2*(a^2-3*b^2)/b^2/(a^2-b^2)^2*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(
1/2)/(2*cos(1/2*d*x+1/2*c)^2*a-a+b)-3/8/(a+b)/(a^2-b^2)/b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c
)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^2-1/
4/(a+b)/(a^2-b^2)/b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+si
n(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a+7/8/(a+b)/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*
d*x+1/2*c),2^(1/2))+3/8*a^3/b^2/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-9/8*a/(a^2-b^2)^2*(sin
(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2
)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3/8*a^3/b^2/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1
/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+9/
8*a/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/
2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3/8/(a-b)/(a+b)/(a^2-b^2)/b^2/(a^2-a*b)*a^5*(sin(1
/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*
EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))+3/4/(a-b)/(a+b)/(a^2-b^2)/(a^2-a*b)*a^3*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(
1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))-15/8/(a-b)/(a+b)/(a^2-b^2)*b^2/(a^2-a*b)*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*
cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*
c),2*a/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec ^{\frac {5}{2}}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(5/2)/(a+b*sec(d*x+c))**3,x)

[Out]

Integral(sec(c + d*x)**(5/2)/(a + b*sec(c + d*x))**3, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^3,x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(5/2)/(b*sec(d*x + c) + a)^3, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(5/2)/(a + b/cos(c + d*x))^3,x)

[Out]

int((1/cos(c + d*x))^(5/2)/(a + b/cos(c + d*x))^3, x)

________________________________________________________________________________________